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20 . ABSTRACT (CONTD.)

Our Identificat ion scheme Is based on a g iven set of Input—output pairs
(Cu ,y ): u EE,y E~. 

Iai ,...m) and on an appropriate description of the class
t~ w?,;cis ô Is Lssumed to belong, a descript ion wh ich permits us to hscorporat

In the formulat ion of C our a-prior i knowledge of the properties of V.
Let y(t) — (Vu)(t) denote the output at time t correspond ing

to an inpu t u. We express this in the form y(t) • V Cu). where we assume that
V belongs to the Fock space F0(E) of order ~ over &. If £ — I (Ti, V can
b~ represented by a Volterra functional expansion. We sha. and ~se the t
property that F~(~) is a reproducing kernel Hu bert space. Also, we construct
a HUbert space B (I,F~(E)) of nonlinear operators fron I to F~(E) andcharacterize the 8perator class C to which V belongs as an ellipsoidal class
In B~,(I1F~(E)).

- — - - -——~~~~ ~~ The above developments permit us to obtain the solution to our nonHnear
system li~-~n flcat1or~ pr~b~em as the solution to an appropriate minimum normproble j~~5 L,F (E))~~ Procedures for obtaining both the noncausel and causalSQIuttã~ii a gIv~en. T~i. also int roduce the concept of “C—causality”, wh ich is
weaker than that of causality , and derive an g—causa) solution to our problem.
The case when measurement errors are present Is finally considered.

e r ’C~ -y The results ~re illustrated by the computer simulation of a simple examplein which very good agreement with the theory is obtained over a wide t ime-Interval.

~ ‘ ~~~::. ~~~~~~~~~~~~
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I. Introduction

*Let S denote a system represented by a non l ‘near operator V:E V

where E and V are appropriate Hu bert spaces called respectivel y the “input ”

and “output ” spaces. From now on , the norm and inner product in a g iven

space , say H , wil l  be denoted by 
~~

‘‘
~ H and ~ • ~~ 

the subscri pt being

omitted when the space referred to is clea r from the contex t

In the present paper , we consider the problem of identif y ing S and hence

V . based on a g i ven set of input—output pairs C (u~
, y .)lu . € E , E Y ,

— 1 , ..., m ) (called “probing input—outp ut pairs ”) and on the class C to

wh ich V is assumed to belong.

Ou r framework is such that the opera tor c lass C i s def in ed by assuming H
a “finite gain ” property for the operator V and taking into account the

smoothness properties of the output . Furthermore , membe rs of C are not

requ i red to be known up to a finite set of parameters. For th i s reason , we

regard the sys tem identification approach developed here as being a “non—

parametric approach .”

Specifically, we formulate the nonlinear system identification

problem in it s full est general it y as follows :

For a g i ven V E C, le t e (V) deno te a norm on the opera tor c lass C

which meas u res an appropr i ate error in the approx imat ion of V by members of

the entire class C. Then , under no measurement noise conditions , V is ou r

best estimate of the operator V (which is to be identified) if it is the

solution of the following problem~ 
ACCession For

~ H
~~~~~~~~~~~~~~* By “nonlinear ” we mean “not necessaril y li near.” 
~
y__

~~~
..
~~~~—

_—--- --

______________________ 
~~~ _ _ _ _ _
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Problem 1. Given u~ ~ E , 
y , i — I , • ,  m and an appropriate

operator class C , f in d V as the solu ti on of

min (e
~
(V)) (1.1)

V~~~c

V(u.) — y
~
, i — 1 , ..., m

If the output measurements are corrupted by - noise , we model the rela-

tion between the probing input—output pairs (u u , y . ) .  i = 1 , ..., m , by

— V ( u .) + v .,  I I, .. ,  m, (1.2) L
**where ~ V sa t i s f y

~~~~~~~ ~?j
)y = i j = 1 , ..., m , (1 ,3)

~~ 
being positive constants , and 5.. = Kronecker delta . The set of equa—

tionstL3) may be interpreted as there bein g no correlation between the noise

present in the ith and jth measurements . In this case our best estimate

V of V is the solution of:

Problem 2 . Minimize

J(V ,E q~~ ~V ( u ~
) - y~~~). ( 1.4)

where J is a criterion which optimiz es the estimate with respect to the

class properties of V as well as noise. II
I n what follows , we assume that the input space E is a sepa rable Hil—

ber t space over the field of comp l ex numbers ; V is the Sobolev space H~(I)

of comp lex—valued funct i ons g on an interval I of the rea l l ine such that

* Ends of forma l statements wi l l  be si gnif ied by the symbol

** If the noise belon gs to some bi gger space than V , then we def i ne as

the projection of the noise on Y. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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(k)
( ~ d

k
g/dt

k
), k — 0 , I, ..., n-i , are abso lutel y Continuous and

9
( n )  

L2 (1) ; and V belongs to a Hu bert space of non linear operators

F (E)), which we call a Bochner—Sobolev space of order n over

F (E), where F (E) is a Fock space of order p over E. 1- :
In sections 2 and 3, we define the spaces F (E) and B2(I,F (E)),

p n
and present mathemat ica l developments per ta in ing to them needed in later

sections. We show that F (E) is a reproducing kerne l H u bert space and

we establish usefu l l inks between F (E) and B2(t,F (E)) on one hand , and

their particular man i festations in the form of spaces of Volterra func—

tionals and of Vo l terra operators on the other hand .

Section 4 is devoted to a detailed formulation and solution of Prob—

lem I fo r the genera l cas e of a noncausal ope ra tor. In Section 5, these results are

particularized to the causal case and (after the introduction of the concept of

“C- causal ity ”) to the •-causal case. Prob l em 2 is solved in Section 6 and an
example presented in Section 7.

The present approach to the system identification problem is s im i la r

to the one proposed by de F i gue i redo and Caprihan (11, [2] for the identi-

fication of linear systems , with the basic difference tha t in the linear

cas e , the space , to which the operator to be identified belon ged , was

assumed to be the space of “t race class ” operators.

Referring to contribution s of other authors relevant to the develop—

ments in the present paper , special mention should be made of the earl y

work of A .V . Balakrishnan [3] and others (see references in [2]) on the

identification of nonlinear systems from input-output data , as we ll as the

recent contributions of Fj. Beu tl er and W .L. Root (see [4] and references

therein) on the identification of linear as well as pol ynomi c sys tems much

along the lines of the present paper . O the r papers on rela ted top i cs are

the ones by J.L. Franklin [5], E. Mosca [61. and W. Porter [7] [81 [9].

We now proceed to construct the mathematical framework used in the

sol ut i on of Problems I and 2.
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2. Develop iients Pertaining to Fock Spaces and Volterra Expansions

Let E be the separable Hilbert space introduced prev i ously , and

denote by Bn ( E;f t ) (where 4 denotes the space of comp l ex numbers) the

Banach space of n—I nea r symmetric bounded forms A Ex Ex ,  . .xE —
where

IA (u 1 ,...u
~) k M U  u 1~ ‘ ‘l’~n~I 

(2.1)

fo r  some M E R1, For any A E B~ ( E ;~~), define a new funct ional

E G b y

PA (U
~ 

= A(u , .  . . ~-I) (2J )

and a norm on P .~ by

~~~~ 
A (-~,. . - ,~~~~~ 

- (2 .~~)

— ~~~ 
I

The sp .~ce of fun ctior~ 1s 
~
P
A IA B~ (E ;~~)) is a normed 1ii~car sp.~ce , ~nd

we denote by 1’(~ E) the Banach sp~ cc of c~nt i~u c’uS f l- h ’~~’Jf lCOU prl y-

iI~~’t lI i . i l ;  ‘b i I i ,t ~~I b y -
~~p l i - i  E F~~(E ; ) r t hi -  (2  .

~~ ? n- - rrn .

Fur A ~. B ( E  ;C) d~~i m e  the n orn ~s - j j ~ and .
~~~~~ .~s i d  I -

~~ (~~h~ seb-

s c r i p t s  H and  B ; t a n d  f~~r 1 (ilh’ r t and J~ar , : , c h resp ect iv i l y and do not

rclc r to specific spaces)

= sup I A ( u 1, - . - , u ) ~ , (2.-~)- . - ~~~~~~

IIA~B 
= SUP IA (W , .. . ,u)I , (2.~~

_ _
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and it is immediately obvious that IIAI~B ~ ~IA IIH.

it is not difficult to conclude that for symmetric n-linear forms

one can bound lIA~H ~ ~~ ~
AIIB 

for some constant c dependen t only on n

(10]. So IHIH arid are equivalert t norms on the space

Let JI ’~ denote the tensr’r product of a h u b e r t  space 1! with itself

n time s [Fl ,12.J and let e
1~ 

e
2

t~. - e~~ be a decomposab le element of

where e~ E E. Then ~t Ot11 t~ 2 definition of E~ ~t ~o11ow~ 
that

e2 .. - ~ e~~~~n-  ~~~~~ ~~~~ and (e 1~ ~~~~~~~~~ [~~,. .  ,u~] =

(c 1)~~
)E . .. (e , U) E for ~~~~~~~~~ u1,...,U~ € E. Here 

~~
,...,J is

a member of the n-t h order Cartesian product of E. tntrcd~i.jce i:

e 1~ c 2. .~~~ e (e l ,) E... (e ,*) E . Then i maps the decomposable d c -

ments of into P(~ E). It is clear that

~ti(e 1Q. .e)~ 
- 

~
(e1 ~E - - - (e ,-) 

~B ~ ~~~~~ - Ije t~ . 
( 2 . 6 )

Defii* i by linearity on all finite linear combinations of decom-

posable elements of E~ and ,us ing equation (2. € . ),it is easy to demon-

s t ra te  [12,13] that i is a bounded l inear map of finite linear cornbina-

- .n _ nl ion s of decomposable elements ci E i n t o  P( E). Finall y, by con-

tinuity extend i to all of E~ . Define a new map S :  E
r
~ E’~ by

s~~=~~~ 

~~~~~ 

, ( 2 . 7 )

where P is the permutation group of n integers and ~ acts on decom-

posable elements of E~’ by

C (e 1~ e 2 . - 
~~ 

e )  = C
C ~~~ e0 ~~~ . - .~~~ e0 - (2. 8)

1 2 n 

- -- 
~~~~~~~~~ - --~~~~~ -- -~~~ ~~~~~~~~~~~ 



ii

~~~~~~~~~~~ £ is separable , t r e  
~~ 

t
~ k~ k—l ~ 

an

orthonorma l basis for E. Then it Is well known [‘.2.~ th at

[c ~~~ ~~~
. . .

~~~ ~p . 3~
’ ‘ ‘~~~ is an orthonormal basis for E’ . Clearly,

i
1 

12 L
fl i1—l ,. - - ,i — l

o I~~ Iy be defined on all ot E~ by C ( 
~~~~~~~~

.. 
~~~~~~~~~~~~ ~

- . . - V c . - - c~’ ~~~~~~~ - , (2. ~~)- and furthermor e , ene can
L~ ~~~~~~~~ 

~~~ ~~ 10
~~~ 1 = 1  1 n
I ii

sh~w that c is a bounded 1 inear ~per at er e~ into E~ - It then i ~l lews

[ : ~~ t h a t  S defined In equation ~2.7 ) is a pro jec t ion  operator in

Ic - S 2 - S~ .tnd ~~ S~~(where the sup e rset- ipt deriot es the adjoint).

Thc ~ uhsp.i~~c S E ~ of E’ is ca lied the sv ’,:unct ric tensor product of

£ of order n. For the case of E L ,(RI
)~ E

n 
is just L~ (1~)~ - .~~~ L,(Th ~~~

it can be s~ cwn that there exists an isotsorp h i s m  .J betlc (cn and LJR~)

such Phat J sends the e lement L - C @, . ~~~~~ into -
t , . _ . , 1 i 1
1 n 1 n

i ,..
1 n

1 ’(1
1
,...,t ), wh ere~ h’E L2 (R~) and i -in orthouorrna l basis for

!,(R1~ . S E ~ is then jus t the subsp .tce of L~~(R ~~)  of functions le ft irv in —

- 

- 

j u t  tinder at -tv permutation of their var jab los - Fur~ hertuorc , one can shuv

~~~ 
chat:

~ 
e
~~ (u1). - .c~~~ (q~~) =

$~?~$ h(t1 ~~~~~~~~~~ 
t~

\ u1 (t 1 ) . . . w ~ ( t )  tit 1,.. ,dt , (2.9)

R1 R1

.~~~~ , ~$(r , Ct ~ ~~~~~ ~~~~~~~~~~~ ~~~~‘ ‘ -  - ‘ ‘
- 

-

-~~~~~~~~ - --~ -~~~~~~~~~~
. -
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who re
e~’ ( .i) $ e~ (t) u(t ) dt , (2 .1C)

where u
1
,u ,~~ , E L2 (R). To complete our ce-nstruc t ion we look at

the t.pacc i(S E~) C P(~E). Certainl y i(S E’) is a linear space and

ince i s  1 — 1  o n S E ~ [i~~ UC C n de inc an ~:;r~ r ~ir odu er be tw e e n  any

two e lcns - :u ts  t.~ , v t(S i. ) by

(~,v) = (i~~~~), i~~~~ ))~ n (2 .1~ )

N~w we invoke the fo l low iru~ theo rem :

Theorem 2 . 1

If i is a 1-1 bounded linear operator front a Hu bert space H into

a 1~iu!~c?. space B then the image i(Ii) C B is a h u b e r t  space with the

inner product

(u,v~ = (i
~~ (~ ),

i
~~ (v))11 

- ( 2 . l~~

Proof: It is clear that i(1I) is a vector space in B and furthein:o r e

it is an inner product space with ir :ier product ~2. i4 T~ show that i(li)

is actuall y a Hu bert space tee muSt  demon strate cc;~p lcteness. Let {bJ

be .‘ C i u e h v  sequence in i(lt) , ie V c > 0 3 N(c) such that (b —b . ,b .-b .~ < c

for i, j  � N
~~

. But

(i~~ (b .) - i ’(b~)~ i~~ (b.) - i~~ (b .))11 (2.l~~)

so that ( i~~ (b~)) is a Cauch y sequence in H. But II is ~omp lc te  so

there ex i s t s  h E H such that i 1(b .) h. Therefor e

-

~ 

A ]
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- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(b -i(h) ,b . - i(h) ) -

• (i
1 (b .) - h , i

1
(b .)  - h)  ~ -

We cdn now say that i(S E~) Is a h u b e r t  space of n—homogeneous

synoict ric pol ynomials on E. We denote ~(SE n ) b y P
11(~

E) and P
11
(’E )  is

k:~ewn in the 1 i te rat t ~rc as the HUbert-Sch m idt pol ynomials on ii ~~~~~~~~~~

From now on we wi l l  denote the inner product in P
11

(nE) b y 
~~~~~~~ 

We

state the following propositions connecting tensor product s of L
2 

spaces

and the hilb c -nt -Scl~rnid t pol ynomials -

x’rorosi t~ (:t 2~~

Let ~ be a s~t-asure space and E = L2 (M) , then P E P 11( ’
~E) if  and  onl y

if  t he re ex~ s c s  h E I. (M<. - 2-~) such that
n 2

P ( ~~) = ?. f h ( t
1
, .  . - , t )  U ( t ) .  . 

~~n) 
~~n 

(2.IY)

Mx. . .xM —

h is svn ::einlc and
n . -

= tlh n~ L (~h:, - . - ,xM) (2. ~
)

P ouf :  Soc Ree d and Simon [~~] .

2 2

Given an orthonormal basis fe .), 1 
of E , each P E P

11
(~ E) is unique ly

expressed as a limit j
~ ~~~~~~~~ 

norm by

1 1P =  ) C . C ...e . ( 2 . _ )
- 1 , . . , r 1 1

u , . . . , i 1 n 1 n
I ii

with symmetric coefficients c . E C and
1 , _ u .
I n

- -



r 
- -

~~~~

l0
2 2

IIPlI~~ L Ic . I - (2.!~~)
n i ,..., i l ’ ’  nI n

Here , e~ (u) — (e ,.
~
)E for ~iE E. If R E 

~~~~~ 
and

R 

~~~ 

d~ ,~~~ 

e ’
1 ,...,c

then

(P ,R)
E ~ 

c
1~ 

- d . 
~ 

- (2.~�ci)
n - l ’ ’ ’~ l’~~

•
~~’ n

Proof: See Dwyer [ j . 3j  -

We will no~ define t he Fock Space [ ] ~ , P- , H] of functionals which

will be the mathematical framework within which Volterra expansions will

be considered. -

Definition 2 . 1 Let p be s ome fixed real number >0 .  The Fock space

of order p ,  denoted F~ (E)~ is t he space of sequences ~f0,f1,f2,.. - )  where

E (
~ and f~ E P11

(’E), suc h that

~~ 
~ 2 

< - (2.21)

It is well known [12] from the construction of Cartesian products of

l l i l~ e rt  sp aces t hat F~ is a h u b e r t  space . We wi ll denote t he  inner

product between two elements f = (f ,f 1,.. ) and g = (g0,g 1,.. ) of F (E)

by (f,g)~ = 
~~ 

-4 (f ,g)~ (2 . 2 ~ )
p 

n=C

W hat we now will show is that F (E) can be co ns idered to be a space of

func tional s on E by the relation

CD f (~) 
-

-

= ~ --
~~~~

--— (2.23)
n=Q

Thus an element f E~’p (E) w i l l be viewed both as a sequence such as in the
Definition 2.1 and a functional on E the evaluation of which is defined
by (2.23).

24



--

II

for £ E F~ (E). Suppose that we have an clement E P
H(

2E) ; then

we know by Proposition 2.2 that

£ — c c ’ (-)e~ (.) (2.24)
2 ~~~~ 2

and

~ 

1c 1j
2 

- (2.~~~

l ’ 2

But Is also an element of P(
2E) so we can consider the I3anach uuo ru

(equation 2.~ ) of f
2
. By de f i n i t i on , 

~~2~’R 
sup 11(L1) I and by (2.2~),

1k2 11 8 
~

‘ 

I~~~~ 

I 
u 11 1

2 

~~~ I - (d.2~)

Sinct& [~ 1)~~1 is a basis m r  E we can  wr i te Lt c-~ 1
C , (2. . 7)

where

= ( t.4,e ) ~ — e~~~ .1) -

App lying the Cauch y-Schwartz inequality to the rig ht-hand side ~f (2?~ ),

we get

I ~ 
- ~i

l )
i2 ~ 

eH~)I ~ ~ I ‘1~~ 2 
)eHu~I Ie~~~(~~) J

2 
11, 12

~~ I c~ ~~I 2 ) h f 2  ( ~ Ie~~
1
(u) I

2
Ie~~

2
(u)t 2 )

~~~
2

11 ) 12

25

U -
in ~~~e I nearl y

- 
a rd in q t o  the prrc ed i ng 1 et luna , e •
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( ~ ~1’~~1~~) ( ~~~ k~ I )  - ) k~~I~~
’
~~

~lI,i2 / i l~~
l I 12 1 )

and since IV~II 1 u.n (2.26~, this impl ies 

~~~ 

k~I
2 

— 1. Using th is  l i s t

equation in (2..—~) we finall y obtain

lI~lH I~~~ 
c
1~~~ 

e (u) e~~ (~) ~ 
( c . ,.  1

2 ) 1/2 II~~~~~~~

St atin g these rt-su its in ~* pr epos i t  ion b r  ii h icr . i u v i i 
• vi- 

~~
O

Pr op I ’ l L  on 2. I

li 1
n 

E P
11(

11
F) then 

~n
11B ~ lit ll~. (2 - (0)

w lu re 
~~~~ 

sup I f (u)~ - IIIHIE=1
i c  t i re new In posit ion t o  show tlu..i t r i - l i t  ion (2.23) tIc L t h e : ;  a h -ti io ’ ,d

(unet.ional on E . If I E P
11

(’~E) then

I f~ ~~ I I f~ 
~i~ lT ) I lull ~ Su 

~ 
I 
~ 

(v I
IIv iI~ 1

~ liUr iif~ I5 -
~ ll~~ ii~~ii~, . (2--U )

cut see from (2.23) , (2 .J iD ) and (2. (1 h th at

- 
~ ~~~~~~~~~~~ i ~~~ 

I ~ ~~~ 
il’~~~

It~~O t~~~
) t t - O

- 2 (2. 4~~ )

~~~~ 

)I/ 2

( 
~ ll

1i~
2
I:f) 1/2 2 

~ 

IIt~~

Il-s 0 Ii - C) I1~~ ~‘

26



__ - _ _ _ _ _ _ _ _ _ _ _ _ _

13

But since we arc dealing with f € F (E), we can write (2.32.) as

• - 

- 

If (w ) I e - - (2.33)

This allows us to state the major theorem of this section,

Theorem 2.2

‘ I
If f E F~ (E) then I ~~ is an entire- -function of bounded type ,

ic. £ takes bounded s e ts  into bounded sets. If D~ f(u) denotes the n-tb

Freche t derivative of f at u then

D
n
~~O) f - (2 34)

The class of functions F (E) Is a Ihilb ert space with the inner product

~~ - )  given by (u )~ )F~ - 
~~~ 

p
fl 

—~~ (D
fl f (~ ),Dfl

g(O))~ - II (2.35~

Proof: Equation (2.3~):scablishes the first statement and the proof

of the remainder of the theorem may be found in Dwyer [ 3] .

The construction of the space F~(E) for an arbitrary Hu bert space

E is due to Dwycr [13 ,IAJ-
The construct ion of  F (E) when E — L

2
(M) , w here M is a measure space

was wel l  known [I~ J before Dwyer The characterization of F~(E) when

E — L
2(R) 

is still a most useful ,ind easil y understood Fock space.

Before we conclude this section , let us introduce a m a p  which will

later prove to be exc oeding )y u~ t fu1 - It u E E thi n the n- Lit order pol y-

( Pt )
ci

nointal u’(-).- .t-1’() on E is ce rt a inly in eli - nietti ol P
11

( F~). 11,-f ine

t x p ( u )  E F~,(F.) to be t he f u n c t  ional

27
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f
I —  —

~~ , (2.36)
in 

11=0

where f t.J(.)...~J (-) -

It is clear that for i € E
(c 1v)~(exp (u) )(v ) e (2.3’7 )

and that

(Pl1ull~/2
= e 

E 
(2.38)

Now if f~ E 
~~~~~~ 

then we may wr i te

~~ 

‘
~~~~~~~n 

~~~~~~~~~~ ~~~~~~~~~~~~~~~ - (2.39)

Using equa t ion (2.2~7) we get for V .
~ E E, u’( .) - ’ - (i ( .)

~ 

e~~~. - .e~ - (2.40 )

Therefore by Proposition 2.2 we conclude that

(n)
(f
n i U’()•• U’( ) )

~~ =

~~~~ 

c~ = f~~~) . (2.4t)

We can now state the following important result.

Proposition 2 4

If f € F~ (E) and i. E  E , then f(i.) = (I, exp (.!~.)>1 . ‘ (2.42)

Proof: By definition and equation (2.4)..),

28
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~

) (u ,
~~

(.)...u’(
~))F

f(u~~—~~ —a- --— —
n—o n—o

n

~~ 
- ( f ~~e xp (~~~)~~ • (2.4Za)

It is wor thwhile to rederive eq ua t ion  (2.33) in light of the abov e pro-

position. It is clear that

IfMI - ( f ,csp(~))r ~ 
IIIII~ lIcxp (

~~~ F (2.43)
p p p

by (2.42.) and the Cauchy-Schiwar tz Inequ ality . By equa t ion (2.3&) we may

rewrite (2.43) as

If u) I  
~ 

& I —
~~ (2.44)

p

which is just inequalit y (2.32). We have actually shown more in Pro posi -

t i on 2.4 than we set out t O do. We have proven that point evaluat ion is a

continuous functiona l on the spice F~ (E) . Equation (2 .4 2a)  identif ies the

repr es enter  of the point evaluat ion at ~ as t he element exp(~ ). For

f u tu re  re ference we s t a t e  this observat ion in the form of a theorem.

Theorem 2.3

The Fock space F (E) is a Reproducing Kerne l filbert space w i t h  t h e

- (w ,v)E/pt i-pr citluc I ng kerne l e for ‘~4 , v E E -

Suppose that our h u b e r t  space E = L
2

(R) - Wh at would the Foc k S p ice

of L2 (R) look like? Proposition 2.1 t e ll s us that f~ € P11(
°L

2
(R)) has

I li e form

______ - 
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1 (u) — $ ¶ ‘~$ h(t 1~~
...~~t~) 1i (t

1
) ...~~(t ) dt

1
...dt~ . (2.45)

in 1(u)
Thus since 1(u) ~, we may write

[ (U) - h + ~~~ Jh1(t 1)u(t j )dt 1 + 
~~ Sjh2

(t
i
,t 2

)u(tj)u(t2
)dt

l
dt 2 +

.
~4 $$ch3

(t1~
t2 , t3)~~~ 1 L~ t2~~t (t3

)dt
i
dt
2
dc

3 
+ - . . ,

where h0 E~~ , 

- - - 

h 1 E L2(R) , h2 E L2 (R 2 ) ,  e t c .

By de f i n i t i on ,

- 

~ $ ~$ Ih~ t 1~...~t~)I 2 dt
1
...dt - (2.~~

7)
p 

~~~~~~

A quest ion whic h might natural ly arise is how much error we incur

- 1 (u)
by t ru ncat ing a Voltcrra ueri es . In othe r w i r d s , if 1(u) = 

i : 0

- I (u)
and we approximate £ by 

~ 

—p , how can we hound the error of such

an .Ipproxinia t ion in a po i ntw ise  reus e? We ~-~ t~ W that

~ f~~~ ) I - I~ 
ff4) 

I ~ ~ II~ 
~f~l1

n ’N+l n N+l

( ~ lIu~~~)~~~ ( IIm nII~~) 
II~Il~~ lI ull 2fl

n N+l ~ n N+l N+l ~

3d
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So U we define the truncated exponential funct ion

C N (z) — ( 2 .—i)

k—N

we ~an say that, the error ~nt Isfius

~ f (u) 
_ _ _

~~~ 
- 

~~~, 
I k~F k”. IT~T .

n=o ~ 
‘-~~~( -u..~ if )

Thic goodness of the truncated approxi :nac ion is p res i .-~~,-i d cr , l~- ;n a :1

ice ighborhood about the or i~ in and det e r  i uF . I leS for lat ~-c v.t 1ue~ et

IIuIIE .

31 
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3. HUbert Spaces of Nonlinea r Operators

We now proceed to introduce spaces of Hi lbert-va hued functions on an

interval I of the rea l l ine.

Def in i t Ion  3 .1 B 2 ( 1 F  ( s ) )  Is the space of funct ions (operators) V0 p

from I to F (E), where V Is strong l y measurab le with respect to ordinary

Lebesgue measure .. on land s a t i s f i e s

& II (3.1)
F (E)I

We wi ll often denote the value V ( t )  E F (E) by V~ , and a lso rep lace

& by dt with the unders tanding that all inte grations are in the senses of

Lebesgue or Bochner.

Note that if u E and y is the functi on on I defined by

y(t) — V
~

(u) , (3 .2)

then, since ‘according to ‘2 .44~)

1y ( t )V dt  
~iV t (u)( dt ~I

exp(~u “/~ ) : v~
2 dt , (3.3)

I F (E)
-~ 

p
it follows that y E L~ (I).

The fo l low ing is e a s i l y  establ ished.

Theorem 3.1 [151 . B
2
(t,F (E)) is a H il be r t  space under the inner product

(V ,W) 
~ 
,f(vt ,wt) dt .lI (3 .4)

B 2 
~ F ( E )

o p

In connection w i th  some app l i ca t ions , it is appropr iate to introduce

smoother versions of the space B 2 (I,F (E)).
0 p
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A function g:I-. F (E) is said to be strong ly dif ferent iable at t E I

if there Is an element Dg(t)~ g’(t) € F (E) such that

Lim I) g(t+h)-g (t) - g ’ (t )~ - 0. (3.5)

H i gher order strong derivativ es D 1
g(t)~g~

1
~ (t), I > I, are sim ilarl y defined .

Def inition 3.2. B
2
(I,F (E)) is the space of functions V from I to

F ( E) such that V, v’,...,v~~~~ are absolutel y continuous and belong to

B2(I,F (E)), and V~~’~ E B2(ZF (E)).I f0 p 0 p

As i n the case of Theorem 3.1 , we have:

Theorem 3.2. 82(I’,F(E)) Is a HUber t space with the inner product

(V ,W) 
~ a. J~ 

(V ( ,W(1)) dt , (3.6)
2 i=0 ‘ I ~ F (E)B1, p

where a i are positive constants.Jf

h

_ _  - - 
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4. Nonparametric Nonlinear System Identi f ica t ion  in the No iseI e~~ Case:

Non-Causal Solution

We now return to the nonline ar system identif i cation prob l em , and

assume that, in the input -output relat i on

y — V ( u)  (4 , 1)

sat isfied by the system S to be identif i ed , u arid y belong respec tively

2 2
to E and H

~
(I). and V E B(I .F (E)). For simp l ic ity we w i l l  denote the

2 -,
spaces 14 (L) and B’(I.F (E)) simp l y by H and B .

One of the key points of our anal ysis is to reverse the roles us uall y

ass i gned to u and V; that is , we shall consider u to be an operator

~~: B~ -. I4~ wh ch acts on V y ie l dinq y according to the re lation

~ (V) ~ V(u) = y. (4 .2)

C learl y, such an operator ~ is linear , arid t is s t rong ly  continuous

since , accord ing to ‘2.44),

< ex p (~ u~~/2~~ ~V - ~4,3)

A l s o, we define the class C , introduced in Section I , by
2 - - / ,C — (V 

~ 
B
~ ~~ 2 (.4 , 4)

B

where ~ is a positive constant suffic i ently large for C to have a nonempty

inter sect ion w i t h  the set

— (V ~ B2 : ~~.4 V )  = y ,  i = I m~ . (4 .5)

- Condition i 4 .4) may be interpreted as a fin~ t~a~.ss requirement on the gain

of the system S (where we define the system ga in as sup C V ( u) ~ /
~
U
~E~

V u)
VU)

and on the smoothness of V . where the extent on the re lat ive boundedness of

the norms of the Frechet d e r i v a t i v e s  of V up to order n is determined by the

constants a. appearing in the definition of ~v , 
see Theorem 3.21 and by v.

2 B;
Let p be a funct ional on B~ w i t h  the f o l l ow i n g  propert ies .

(i) p is bounded on bounded sets of B ;

..( i i )  p
~

-’O on B~ ;
1,

~~~~~~~~~~~~~~~~ : - - - 
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iii) pIV + W) — - p (V) + p (V) V V . W ~

(iv) p(~~ V) l i ~l p(V) V -~ 5 ~, V 5

( v )  p is continuous Ofl B .

We define the error criterion e~ over the class C (introduced in

Sect ion I) to be

e ,(V) — sup p(V - W) , (4 6)
W 15C

and reformulate Problem 1 as:

P r o b l e m Ia. Same as Prob l em 1 , with the additional specification that

y = H”(I) and that C and e. be as deflned by (4 .4) and (4.6). I
L

Remark. Equat ions (4 .6) and (4 .4) c o n s t i t u t e  a minmax c r i t e r i o n  for

t he  choice of the best V. This type of criterion is particularly appeal-

ing when the number af measuremen ts is small thus making a statistical

Cr iterion not p l a u s i b l e . -

.1. Geometrical Considerations

Our solution to Prob l em Ia r e l i e s  on the geometry of the set

— C . (4 . 7)

to which we now turn our attention .

A set ~ in a normed lin ear space X is said to be syn-mc etric f there 
- 

-

ex i sts an element x0 ~ S . called the center of 3, with the property that

xo 
+ ‘

~ 5 3 ~ x0 
- “ 5 S. Let p denote a seminorm on X with the properties

(i) throug h (v) stated earlier (where now X replaces B~) then the following

result holds:

Lema 4.1 . If S is a bounded symmetric set in normed linear space X ,

then the center x0 of $~ minimizes

e(x) sup p(x - y ’ . 1 (4 ,8)

_ _ _  i : ~ ~~~~~~~~~~~~~~~~~~~~~
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Proo f. S ince  p is a funct ion of (x-y) and S is symetric , we may

t consider the translate d set 3’ — - x0, wh ich  is a l s o  syrm~e t r i c  and has

the center at the or i g in . We shall prove that the ori g in minimizes e on ,S1 .

Let (x~~~
’
,,,1 

be a sequence in 5’ such that p(x 1
) e(O) as i —

Then for any ~ ~ ‘ 0 there exists a N(€) such that

e( O ) < p(x .) + € ,  i N(s) (4.9)

and

2p (x .) - p(2x .)  = p(x . + y + x . -

— p(x. + y) + p( x .  - y) p(y-(-x .)) + p(y - x .) . (4.10)

So we conc l ude that

either p(y — x.) p(x .), (4 . lla )  - -

or p ( y  — (—x )) p(x .). (4 . l lb )

If (3 .lla) is true , then

p(y — x .) ‘ p(x ) e(O) — (4 .l2a)

while if ~3.l lb) holds , we have

p(y — (— x .)) p(x .) > e(O) — - (4,l 2b)

Now (4.12a) implies that

e(0) p(y - x . )  + ~ < sup p(y - x) + €I 
x~ $ ’ (4 .13a)

and (3. 12b) implies that

e(0) < p(y - (_x
~
)) + 

~ 
‘-. sup p(y - x) + ~

(4 . l3b)

s ince x . and -x~ are elements of 3 ’ .

Because € is arbitrary , it follow s from (4.13a) and (4.13b) that

e(O) < e(y) for all y 3’ . II
Now le t

N — (V E B 
‘
~L(V) — 0 , i 1 m~ . (4 .14 )

-_
~

-
~1~

-
~~i~~~:: . I
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The following constitutes a particul ar ization of a well -known minimum norm

resu l t  to our problem .

* 2 -Lemma 4.2. If V ~ B satisfies the relations
n

(V*, W) 
2 = 0 V W N (4J5)

Bn
and

~~i (V *) = y
~
, i = 1 m , (4.16)

then V is the uni que solution of the minimization prob l em

mm IV 2 (4 .17 )
VcX B

(where ‘
~ 

is defined by (4.5)). II
Next , we have

Lemma 4.3. Let V denote the solution of (4,17) and ~ be as defined

in (4 .7) ,  If V + ‘ E ~ then

*(V 
~~ 2 = 0. (4.18)

n

Proof. Clearl y, V
* 2  2 *To prove the lemm a, suppose first that }V 

2 
= - Then since V is

B
a minimizer on ~~~, it must be that n

* 2
liv + hI

B2 
= V (4 . 19)

which imp iies that

(V*, ~~ 2 = 0 (4.20)
B~

* 2  2Suppose next that ‘Iv 2 - Then define the functional on
Bn

* *F(s )  = (V + sW’, V + s’) 2 , (4.21)
B

- n
By continuity, there exists a nei ghbor hood [~ c, ci about s 0 such that

F(s) < 2

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

~~~~~

_ _ _

~~~

_

~~~~~~~~~
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Now since

= 
~~~~~

‘ 
i 1 ,..., m, (4 .22)

we have

IL(,i) = 0 , i = 1 , ..., m. (4.23)

Hence V + s~ E ‘~ 
for  a l l  S.

Since F is min imized at 0 , we can d i f ferentiate (4.21) and obtain at

s = O .

= (2(V , fl) + 2s(~~,fl)) ,~ = 0 (4.24)

or

(V ,~i) = 0.

Finall y we have :

* * *Lemma 4.4. If V and ç~ are as in Lemma 4.3, then V + i~ = V -n E

*(and hence V is the center of ç~). II
*Proof. Si nce V + ~ 5 C, 

we have

2 * * * *> (V + -•-‘
, V + ~

) = (V ,V ) + (~~,1~)

(V* - ~~~, V~ - ~) ,  (4 .25)

the equal ities following from the preceding l emma .

4.2. Solution and Algorithm

I~’ order to state the system 
identi fication result that we are

-,fter , we require the following two additiona l lemmas.

Lemma 4.5. If (u. i 1 , .. .,  m) is a set of d is t inct *

e lem ent s of E , then Ce
u m

: i l , • . . ,  m) is a l ine a r l y independent set of

F (E). —
p

Proof. See Gu i chardet [Ill . II
Lemma 4.6. If u ., i 1 , . . .,  m , are dist inct elements of

(u , uj )
E , then the mxm mat r ix  G w i t h  elements G. .  = exp -

IJ p

is nonsingu lar.

* u 1 and u2 are distinct elements of E if Uul_ u2I~~~ 
0.
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U .
Proo f. Acc urd inq to the preceding lemma , e , i =l in , are l inear l y

indepen dent elem ent s of (E). The result t hen follow s from the fact

u . u . (u . - u .)
e 
~~F~~E) exp I .J E 

-

it is now poss ible to state:

Theorem .1. In Problem Ia , suppose that the probing inputs

u .: i~~l iii , constitute a set of distinct elements of E. Then Pro—

blem la has a uni que solution expressible in the form

in (u., ’)

V(’) — ~ c.exp 
i E 

, (4.26)
i=l

~s he i t  C .  H are derer: ’iined by

c 1
(t)

c(t) 
~ c~ (t) 

G~~~(t) ~ G
1 y~ tt ) 

(4.27)

C rn
( t )  y (t)

tu. , u .)
where i~ is the Grain matrix (exp ~ ) .  - of the

p i , j  I m

set ces 1) ( (u . . ‘ )/ ~ : i — 1 

Proof. S ince u~ , i= l m, are distinct elem ents of F., according to

Lemma 4.o G
1 

in (4 ,2 1) e x i s t s .

Clearly . by ccin struct ion ,

V(u  , i = I iii . 14 . 28)

I f  W ~ N , then

- - m u -

2 ~ a.D~ ~ c~ (t) (exp __L Di W )dt
B t j=O ~ i—I t

n
m I)

E a .D
~
c
~
(t)D JW

~
(u .)dt = 0 (4.29~

1= 1 j—O ~ I

where the second and third equalities follow respectively from Theorem 2.3

and the fact that D
~
W
~
(u.) = 0, j = 0, 1 n —i , and D nW t (u i

) — 0  a .e .

since WrN . Accor dinq to Lemmas 4.2 through 4.4, V(•) defined by t3 .2b) is

the center of ~ and hence by Lemma ~. . 1 the sotut ion to Probl em la. 1
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Remark. It is of interest to obtain an estima te of the

e r ror

— ‘IV - V
~ 11 2 

, (4 .30)
F~(~)

where V t and correspond respectivel y to the actua l system and our

est imate of it accord i ng to (4.26). According to the projection theorem ,

we have f o r  ~

— ( llV~~F~~ 
- 
~~t3 G

’
~ ~~(t )  ) (4 .31)

If u~ , i — I ,...,m , a re  or thonorma l , then the diagona l elements

of G are e (Napierian base) and its off-diagonal elements equal to un i ty .

Then , (4.31) is expressible in the form

= IlV~~~~~~~ 
- 1_ 1 L ( t ) 11- 

~ 
t(t) y.(t) , (4 .32)

where

e +  m - 2 
= (4 3)

e +(m—2)e— (m-l) e + (m—2)e—(m-I )

An estimate of ~ can then be obtained by replacing for

flv t ; F ( ~) in the above formula , wh ere v is the constant introduced

in connect ion with (4.4).

. - .. -_ =-  -.---- - . . - -  

- 

- -
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5. Causal Soluti on

Thus far , the onl y conditions assumed on the probing input-output

pairs (u. , y .) .  i I m , are that they be l on g to appropriate spaces ,

and u~ , i — I m , cons t ute a set of d i s t i n c t  e lements of E.

Howev er , if we demand tha t the solution V to the system identification

problem of the preceding sect ion be “causal” , we need to impose additional

restrictions on those pairs when m 1; in other words , when the numbe r

of the probing input-output pairs is greater than one , the causality

constraint on V man i fests as a set of admissibility restrictions on the

pairs. These restrictions are deve l oped in subsection 5.2. Al so , in

that subsection we introduce a weaker form of the concept of causality,

which we call u e_ causality i ; and show tha t it is possible to construc t

*an e-causal solution V to the prob l em under cons i deration under less

stringent admissibility requirements on the pairs (u~~ y.) , i = I m ,

than for the s t r i c t l y causal  case.

For simp l i c i t y  in presentat ion , we wi l l  assume that the opera-

tor V be longs to the space 82 (1, F ( L 2(I)) which we w i l l  abbreviate as B2 .

w here j — (0 ,1],  and hence (accord i ng to (2 .46)) admits a representat ion

of the form

y( t ) - V
~

(u) h ( t) + 
~~ $ h 1 ( t ,s 1 )u(s

1 )ds 7 + .,.

l — ~— 1 (n)
+ 
~rJ ’ ... 

~~ 

h(t ,s 1 S )u(S 1 )...u(S )d5 + ,,., (5 .1)

where ds~
”
~ — ds~ ... ds 1 and t he h

~ 
satisfy the cond it ions stated in

connection with (2.46) and (2.47) .
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Let P
~
: L

2
(1) — L

2
(I) be def ined by

,‘ u(s) if s < t

(P u)(s) — 
a.e. (5.2)

t 
~,,
0 i f s > t

Definition 5.1. V 5 B
2 i s causa l  i f

P
~

(V( P
~

u)) P
~

(V(u)) V t E [0,1] . II (5 .3)

introduce the step function
(0 , t~~~0w( t) —~~ (5.4)

t > D

and define the operator ~
‘:B2 8

2 by

h ( t) +
~~~n

J
~~

i

w (t_s
l
)h

l
(t
~
S

l
) u (s

l
)ds

l

+ .. + I .
~~~

.. S~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ ... 

- 

(5 5)

Clear l y, CV i s a ca usal operator .  Furthermore it can be easil y shown

that ~ isaprOject iOn operator. In fact , it is obvious that ~2 
= ~~~, and to

show that C = C simpl y use the d e f i n i t i o n  of the inner product in B .

Denote by M the subspace of causal operators in B
2 

, that is

M “f ’ s 2 
. (5.6)

We seek the solution of :

Problem lb. Same as Problem 1a , except that E = V — 12(I), 
and he nce

V E B~çL,F ( L
2
(I))) (abbrevia ted as B2), and we r e q u i r e tha t V sa ti sf y the

~~~~ ~raint

V S M . (5.7)

*Hencefor th, the superscrspt~
’ on an operator symbol denotes Its adjoint. 

-
~~~ .~: _________
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Let 
~ 

be as in (4.5) w ith B~ replaced by B~ - Cl ea rly, ~ ~ P1 is

a closed l i nea r var i ety in ~
2. Hence , If -< 1) P1 is nonempty,as we s h a l l

assume from now on , i t follows from previous considerations that Prob l em

lb has a uni que solution V which is the minimum norm element of .< P 14.

To obtain an explicit representation for V , we use the fact that V

is the uni que elemen t of ‘,
~ 
P 14 orthogona l to N fl 14, where N is the subspace

define d by (4 .14) (w i th  82 replaced by 82). Th is fact is elicited by

Lema 5.1 be low,

Let z denote an arbitrary element of ‘< fl 14 , i .e .

E ’ (flM. (5.8)

Clear l y,

(5.9)

Leqmia 5~ l. 
~~

f l M — z + ( N fl M).

Proof. Sufficiency : Let (using (5.9))

x E ~~~f l M (z + N ) f l M . (5.10)

Hence , according to (5.8) and (5 .9), x can be ex p ressed as

x — z + r (5.11)

where z 5 14 and r 5 N , But since , according to (5.10), x E 14 and , as we

have just stated , z ~ H, it follows from (5.11 ) that r ~ 14 . So the sufficiency

is established .

Necessity : Let x be expressed as in (5.11). Then , according to the

right side of lenina 5.1 , x € H because both z and r belong to H, and r

belongs to N (because it is in N fl M). Hence , by (5.10), x 5 
~~ 
P M. II

- —
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‘.1. T~~ Cos., cit a S ”jle Prohir ’g Inc t -0 i~t p o r P- i i : -

~nr the  c i ~~o ~f a sini j i probir i ; inp~:~ —~ u~ o Lt  o.-i r . .-~~~ ‘ i -

~~
—
~~~j  ‘3 - It m ~‘ , hc s :  I lit c~n c i ’ i e’i c øf ~~

V~~~ ) = ce ~ ii , ( 5 ) l i ( s ) ~~t~~, i ~~. I~~)

t 2

~~ (t) ~exp (- 
~ :~ ;u 1 (sfl d~-~ I v 1

i. t~~. I ~~~~ - H)

Pr~~ f . It is c I ~ar that (5. 12) is a I o~~s ftle Wi ~t ion . A-~~i’H i ‘i;

L e -- ’n.~ 
‘
~~. 1 , t . ~ show that i t  is of mi i~i~nun nor m it s s u f f c i - ? n t  t~~~

~~~~~~ t ot ~-~ch V IS orthocopal t ~ ~~~

(- .12)  can ~e exp. i-i-~d H the form

‘/~ (u) 
~~~1 (t~ 

( l +
~~~~: w(t-s

1~~
ii

1
( s , )u  ~~~~~~~ 

-
~~

‘ O  - -

+ L~ . J ’ ~(t— s
1
) w ( t - s ~~~u 1 t s ~ ~- ,) s

1~~u ,~~d~~1 is , ÷ ...

~ o - —
(5 . 14)

:iq he i inc r produc t in 01 t i . - C V t i  d l  ~ b i i i ~ V

-
- ,‘d by ( . 5) uc I ony ii t ~i N~M , ~~~ - on ~i

~V , J~ ‘ Z~~Ct ) ~~( t )  + -
~~~~ j ’ ,(r ,i

1
)w (t-5

1 ) i i .(s
1
)ds

+ ~ h2~ t .s 1 , s ,) w(t- s
1
) w (t-s ,)

u
1
(s

1
)u

1~~
s
2
) ,is

1
ds , + . - .~ dt  - ~~~~~ ls : 

~~~~~~~~~~~ ~ . .
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ii

in (:~,lY’, bt-~ .~~~e V— EM , .-.e b~ve

h 1~ t ,s 1 ) w(t-s 1
) h 1~~t ,s 1 ) ~ (~~~~. i(’a)

h ,(t,s 1 , s~
)w (t-s

1
)w (t-c 2 ) = h 9 (’,s , , s ,) a~~. ~~.lbb)

Using equations (5.16) , expression (5.15) red uces to

~ 1 (t) V
t
(u ,) dt - (5.17)

Above , V
~
(u ,) — 0  a.e. because ~~~ Hence (5.17) vanishes thus

es tab l  ishing that V defined by (5. 12) is ortho nonal to NC~1 -

5.2 The Cas e of Sev eral Prob i~~~ j n put — 0 ut p u t  Pairs

We now ~oos i der  the case in whi ch the number of the orob in n I:
input—outpu t  Pa i r s  (u . ,y .) .  i I m , 5 eq.~ il to or g~ eatnr than two .

~e ae~iot e col (u I,..., urn
) and Coi y 1 ,. ..,y ) respectivel y by ~ and ~

and u t  reduce the causal Gram - ia trix ‘t(t) with ele rent s defined by

- exp ( 
~ 

u ( t ) u . ( r ’) dt ~ i , j= i  -i . (5 , i - ~’
.1 0 ’-

~.2. 1 S t r i c t l y  Ca usa l S o l i t o n

As i n  t h e  case of (-..27) (with G now renlaced by i.he causal

we require to obtain the sc-Iut ion CU) col (~
’
1 tt ) ~~(r)) of H

the equation

~~t t )  CU l  = 
~ (t~ . a.e, (5.19)
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The difficulty arises at the orig in because ~(0) is a singul ar

matr ix with all elements equal to un i ty . According to this last fact,

in order for (5 .19) to have a so lu t ion  at t — 0 , 
~~~~~~ 

i — I m ,

must be w e l l  def ined~ and there must hold

+ c 2(0) + ~~~~~ + 

~~~~ 
— y 1

(O) — y2 (O) — ~~~~~ — 

~~~~ 
- (5 .20)

ln addition , the following condition w i l l  be needed in the nei ghborhood

of the ori g in :

For some t > 0, the restrictions of u, to (0,t), 0< t <~~~~ , are

distinc t elements of L
2(0,t) and

l im G
1
(t) 

~~~( t )  exists as a f i nit e vector ( where~ in (5.21)

t-.0
t~’O taking the ll mit ,we consider an appropriate member of the

equivalence class ~~).

We w i l l  call (5.20) and (5,21) a set of ‘ admissibility conditions ” on

the probing input—output pairs ,

Remark, For in 2, condition (5.21) is obtained by requirin g

that

y (0), y ’,(O), u 1
(O). and u

2
(O) be well —defined

(5.22)
and finite and u

1
(0) 

~ u2
(0),

This is g leaned from the fact that ( for m 2)

— 
Gn2 (t) y

1
(t) — C U) y U)

C
l 

t — 
— — —2 (5.23)
G 11 (t) G22

( t) — G 12 (t)

- 
G 12(t) y 1

(t) - 611
(t) y

2
(t) Hc2(t) — 

— (5 .24)
G

11
(t) G ,,(t) — G~1tt )

* if y EL (P, th~~y .  is an equivalence c lass .  For the sake of complete
general ity , 1we say that y ’(O) is “well defined” i f a member of the class y.
is such that ç.(t) tends ~o a limit as t a 0, and we denote th i s ~lmIt by y,(0i .
In other words~ y. is the equivalence class aenerated by such a y,, A sim i ’ar
statement app lies ’when we say tha t a derivat ive of y~ 

is welt def it~ed at 0 .

~
‘(0) is defined as the solution of (5.19) with ç(0) defined as above,
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Now , according to (5.18).

l im  G ,. ( t )  — 1 , I, j — 1 .  in (5.25)

t -.0

I im G . . ( t )  — 4, u 1
(0) u.(O) ( 5, 26 )

t- . 0

Hence , by l ’ H~p i ta l ’ s ru le ,

— 
G,~,2(t) y 1

(t) + G,9(t) Y ;
(t) — G;2y2

(t) — G 12 (t) y (t)
lim c U) — flm 

—

t -.0 t— 0 G
1
(t) G22 (t) 4 

~~~
(t) G~2

(t) — 2G
12
(t) G

;2(t~

— 
~~ u~(O) (u2

(O) — u1
(O)) y 1

(~~ + y (0l — y~ (0)

(u (0) - u (Q))
2 

(5,27)
1 2

and similarly with c
2
(t), which shows that (5.22) is a sufficient

condition for (5 .2 1) .

For the case of m 3, the above type of calculation becomes

extremely ted ious. In app l i ca t i on  of l’Hap lt a l ’ s ru le, d i f f e r e n t i—

at Ion up to order three has to be carried out o~ the r~u,r~ rator

and denominator of the expressions for ~~~~~ i — 1 ,2 ,3. Such a

differentiation of the denominator g ives

- 

G 11
(t) G 1, (t) G 13(t)

D ’’ (t) iL G ,1(t) G,2(t) G23(t) - (5,2t~
)

dt G
31
(t) G

32
(t) G

33
(t)

and hence

1 4
(2 u

1
u

1 
+ u ,) u

1 
I

i i i  3 , , ‘ 1 2 2
D (0) 

~~~~ 
iu~ - u

3
) (u

1
u
2 

+ u
1
u
2 

+ - u 1 u2
) u

2 
1

I ~ 1 2 2
(u ,u3 

+ u
1
u
3 

+ p u
1
u
3 

u5 
I
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u
1 

(u
1
u + u ;u2 

+ 
~ 

u~u~)

+ (u
1 

- u
3
) u

2 
(2 u.,u,~ + ~~ u~ l

u~ (u~u +  u~u3 
+ ~ u~u )  1

u
1 

I (u
1
u
3 

+ u
1
u
3 

+ ~~ u
1
u
3
)

+ (u
1 

- u
2
) u

2 
1 (u

2
u~~+ u~u3

+ ~ u u ~) (5~~9)

u
3 

I (2 u
3
u
3 

+ ~~ u
3
)

where we have abbrevia ted u .(0) and u~(0) by u , and u~ fo r i — 1 ,2,3.

F rom (5 .29) It follows that D (0) ~ 0, if u
1
(O) ~ u~(0) ~

This and considerations resulting from diffe rentiating the numerator

lead to the ollow ing sufficient condition for (5.21) to hold :*

y~ (O), u.(O), and u!(0), i — 1 .2 ,3 , be
(5,30)

well defined and finite and u
1
(0) ~ u.(O) V ~~

j, i ,j — 1 ,2 ,3.

A sufficien t condition similar to (S .3i3 ) can be derived f~-

in ~ 3 but the calculation is too ted i ous to be carried out here, ‘
~

Lenina 5, 2 , Suppose u , and y~ .L 2
(I) , I — 1 in , satisf y

condition s (5.2C) and (5.2 1 ’ . Then (5 , l n J  has a unique solution E with

c L’U),

Proo f, Since Iiin G
1 (t) ~(t) exists and is u nite , there is a

t -4)
t—0

sub interval ~O , t~~, 0 
. t , cwer w hi c h ’

~~(t )  — 
~~~~~~~ ( t ~~ ~~t’~ is hounded

ahost everywhere . Since a. , I” I rn are distinct on (0&~ - they

* I,’ ~~~ c.~l culd t ~~. hi ghe r o r d e r  t ~~~ in ~~~~ d rw’’~ o r
d s t  r but ona ! ~e -1s. -~ of u.  and ~ ca~~ — I  - - -

- -~~~~~~ --  - - - -~~~- - -



are d istinct on (0,t l , t —. I , and hence ~ and  ~~
1
are continuous

on [L1, l) .  This and the fac t that y
~
E 1

2
(1) establishes that the restriction

of a’
~ to (~ 1 , l J belongs to L

2(t1 , I). Because , in addition , ~ is bounded

a. e. on (0 ,t 1 1, we co’ ’Jude that E 12(I). ‘ I

The above leads to the fo l l ow ing :

Theorem 5.2. Let m 2 in Prob l em lb . If , in this prob l em , we

further restrict the operator to be identified V to be such that

i — I m , satisf y the admissibility conditions (5.20) and

(5 ,21), t hen Prob l em lb has a uni que solution expr essible in the form

( w i t h  the understanding of the notation V (u)(t) — V
~
(u)):

- 

i -I 
~ .(t) expi 

(u.,.)
~ , (5.31)

where

(. .) (. .) 
~ 

, (5 .32)
V(0,t)

and are the components of the vector ~ obtaine d by solving (5.19).

Proof . It is clear that V S B2 and
0

(Vu .)(t) — y.(t), i — 1 in - (5.33)

Proceeding in much the same way as in the proof of Theorem 5.1 ,
(u., .)

we can show that each term of the form ~ .exp[ is orthogonal

to eve ry V E N ‘ 14, this completing the proof . I!

_ _ _ _ _ _ _ _ _  _ _ _
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5 .2 ,2. ~—Causa I  S o l u t i o n

In order to ~-eaken the a d m i s s i b i l i t y  conditions (5.20) and

(5.21), we introduce the following generalization of Definition 5.1 :

Definition 5.2. V5B~ is ~—causa i (for some positive ~ < 1) if

P~ (V(P~u)) = P
~ 
(V(u)) V t ~ l~ - (5 .34)

We may now formulat - the follo w ing weake r form of Prob l em Ib :

Problem Ic. Same as Prob l em lb except that the constraint (5.7)

is rep lac ed by the restriction tha t , for some specified ~, 0 < C < 1 ,

V be non—causal for 0 .~ t ~ e 
and causal for t > ~ - Q

Theorem 5.3. Let ~~ , 0 < ~ < I , be such that the restrictions of

u., i — l ,...,rii , are distinct elements of L2(0,c). Then for this 
~~~,

Prob l em Ic has a uni que solution described by

(u..
~

)Lz (Q )
= :  c . ( t )  exp( — ~ V 0 < t < ~ , (5 .35a)

(u.,’)
V
~

(-.) = r  
~~

‘

~~
( t )  exp( t

) v < t < 1 , (5.35b)

where

c.U) = G 1 
~(t), (5 .36)

= ~~~(t) ~(t) , (5 .37)

where G and ~
‘( t )  are mxm matri (es with elements

G.. = exp (~ 
‘
~ 

‘ __~~ !~__ )  (5.38)

- - ~~~~ .
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= exp( u i (0
~~~) . II (5 .39)

I
Proof. Clear from the arguments used in proving Theorems 4.1 and

5.2. 1
Remarks:

(a) in some cases , it may b e eas i l y verifiable tha t the condition

on Cu : = I in) of the above theorem holds for arbitraril y small

~~~, as in the examp le Cu.(t) = sin kt , k = I in) -

(b)  A l s o , it is inriediatel y c lear  that a s u f f i c i e n t  cond i t i on  for

the condition on 
~
u
~
) of Theorem 5.3 to hold for arbitrar i l y small 

~

is tha t the a ., i = 1 m ,be continu ous in the nei ghborhood of t = 0,

and in addition u.(O) ~ u.(0), V i 
~ j  -

- ,—-- --‘-- —— --.- _lIII
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6, Nonlinear System Identification in the Noisy Case

We next turn our attention to Prob l em 2 formulating it in the followin g

specific form :

Prob l em 2a. Find the solution V of

mi n ’
~(V) , (6ja)

V E 6 ~

w h e r e

J (V ) = 
~V l

2
2 + 

~~ 

qT~~~~ (V) - . (6. ib)

Remar k: The c lass  propert ies of V are taken into account by the con-

stants a. , 1=1 , ... ,n , (see equation (3.6)) picked in the definition of the

inner product in , while the noise properties are accounted for by the

wei ghts q , i= l , ... , m , in (6 . lb ) .

We seek a noncausal (not necessaril y causal) solution V of (6.1).

Detai ls on the causal extension of the present resul ts  can be worked out in

exactl y the same way as in sect ion 5 and hence wi l l  be omitted .

To obtain the so lut ion to Problem 2a , we f i r s t  construct a H u bert space

~ defined by the Car tes i~ n product

(6.2)

with the inner product between any two elements of ~ f=col (f0,f 1 
f )

and 
~~~~~~~~~~~~~~~~~~ 

wher e f0 and g0 5 6
2 and f . and ~ E Y , i 1 ,..,,m ,

def in ed by

= ~~~ +
~~~ 

q7
1 (f~~g 1

)~ . (6.3)

In troduce the operator L: ~
2 

— ~ in the Form

L = col (l ,Z ,(.), ...,u (’)) (6.4)

and denote by ~ the vector

= co l (O ,y 1,.. - ,y). (6.5)

L _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .



Then (6.lb) can be re-written as

J(V) = 1L V - 
~~~~~~~ - (6.6)

The fo l low ing  two l emmas , wh ich result from elementary considerations ,

are stated without proof.

Lemma 6.1. The adjoints of ~ .:B
2 

— V and L:B 2 
— B are :

(
u~ 

~~ (6.7)

and

= (1 , q~~ ~~~~~~~ ..., q~~ ~~
) 

- II (6.8)

Lemma 6 .2. The m inimizer V of (6.6) s a t i s f i e s  the operator equation

L~~ L V = L ~~~~ . (6 .9)

We also need the followin g result.

Lemma 6.3. The solution V to Problem lb belongs to N.L (orthogonal corn-

plement of N), wh ere N i s def in ed by (4 .14) . H

Proof. Let P denote the orthogonal proj ect ion from B~ into N~ - Then

J ( V )  = ( P V  + (V - P V ) , P0
V + (V - P

0
V) )

2

+ E q7
1 

1~~
(
~0” ) —  “iIl~

= ( P V , P V )
2 + E qT 1 !~~.(P V) - y.~~

+ (V - P V , V - P V)
0 0

6
2

= ~ ( P V )  + II V - ~~~ l~ 2 

n

n

> J(P0V) , (6.10)

with equality if and only i f

V = P4~V , i .e. if V E N1 -

-- --- --— —--- . —-—----—---- - :~~~~~~~~ ==- - —
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Now the set

(u1, - )
(ex p( 

p 
1 : i — I m) (6 .1 1 )

spans N-’- - Hence , by Lemma 6.2,
m (u ,

V
~ 

— E c
~
(t) exp ( I , (6.12 )

wher e c . ~

Substituting V resulting From (6.12) i nto (5.9) and solving for

C 1 ,  i — I  m , we are led to

Theorem 6,1. The solution to Prob l em 2a is

V cT ( t  + G~Q~~G) 1 ~+Q
_ l ~ 

, (6,13)

wher e

c col (c
1 cm) , 

(6.14a)

Q — d i a g ( q
1
,... ~~ , (6.l4b)

— c o l (y 1 , ..., y )  - (6.l4c)
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7. Computer Simulation Example

I n order to illustrate the prece ding developments , we consider the

simple example of a system described by the scalar differential equation :

— —y(t ) + u(t)y(t),— d/dt , y(O) 1 , (7.1)

on the interva l Z — [0,11. The exact input-output descr i pt i on for such a

system is
t

y ( t ) — V ( u ) — exp C~
’ ( u (s)  — l)ds)

t

t
— ex p(-t)  exp(~ u(s)ds). (7.2)

We ass ume we are  g iven the eleven probing input—output pairs :

u
1
(t) — 1 y 1 (t) — 1

u2
(t) = sin 2nt y2(t) = exp (—t)exp (—(cos  2 rT t— l ) /2 i~

u3
(t) sin 4rrt y3(t) 

= exp (-t)exp (-(cos4,-~t-l)/2n)

u6
(t) — sinl0m t y

6
(t) exp(-t)exp(—(cos l Omt—l)/2n)

u7(t) cos2TTt y7(t) exp(—t )expf (sin2~rt)/2m)

u8
( t ) — cos4rr t y8(t) = exp(—t)exp((sin4i-it)/2r~)

u 11 ( t ) cos lOnt y 11 (t) = exp(—t )exp((sinlO,-it)/2rr)

(7.3)

W i t h  p = 1 and u. . , i = 1 , ... , II defined as above , (5.1 8) becomes

t
‘
~ ..(t) — exp (~ u .(s )u ,(s)ds )

‘- 0 ’ ~

i , j=l , .. ,  11 - (7.4)

I t Is clear that the (u1 , y.), i 1 in , sa ti sf y the con d i t ion for

an C-Causal solution V to exist , g i ven by the expr ess i on (5 .35), for

arbitraril y small ~ (see Remark after Theorem 5.3).

Consider the test input u(t) — t. Accord in g to (7 .2), the corresponding

exac t output is 

—-- - -—- -__-~~~-- - — —  _---_—_ -~~~~-- - 
_ _ _ _ _ _ _ _
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y(t) exp (-t) exp(~ t
2) (7 ,5)

Table I and F i g. I compare samples of this output at sampling instants

t~ — (.04)i 
* 

I = I 25 . (7 .6)

with the corresponding samp l es of the outpu t of our solution operator V

i n  a d i g i tal  computer simu lat ion , where we have assumed the value of

— .04. The agreement is remarkably good except for the first two instants.

The d isagreemen t nea r t = 0 results from the fact that det(G..(t)) tends to

zero as t -.0. If we take 
~ 

= .12 , the agreement is nearl y perfect.

TABLE I

y(t .)—9(t.)
t~ y(t .) y(t.) Error ~ Y( t

~
)

.04 .96155838 2.80 182753 —191

.08 .92607505 .50049397 45.95

— 
.12 .89332931 .89325025 0.00885
.16 .86312134 .86312003 l.5l~~l0

.2 .83527021 .83527024 — 3 .59xl0
6

.24 .80961213 .80961212 I .23Xl0
6

.28 .7859988 1 .78599882 — l ,27x10 6

.32 .764296 1 .764296 1 0

.36 .7443827 .7443827 0

.40 .72614904 .72614904 0

.44 .709496 30 .70949630 0

.48 .69433550 .69433550 0

.52 .68058674 .68058674 0

.56 .668 17845 .668 17845 0

.60 .65704682 .65704682 0

.64 .647 13523 .6471352 3 0

.68 .63839376 .63839376 0

.72 .63077882 .63077882 0

.16 .62425272 .62425272 0

.80 .61878339 .61878339 0

.84 .61434415 .6 14344 15 0

.88 .61091344 .6109 1 344 0

.92 .60847467 .60847467 0

.96 .60701608 .60701608 0
1 .00 .60653066 .60653066 0
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8. Conclus ion

I n this paper we have developed an approach , based on a Fock space

and Volterra expansion framework , for the formulat i on and solution of

the nonlinear system i dentification prob l em , both witho ut and under the

causality and C—causa lity constraints.

- 

H
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